
Unveiling theTransport
Jeffrey Mogul, LawrenceBrakmo,David E. Lowell, DineshSubhraveti, JustinMoore

HPLabs,PaloAlto�
Jeff.Mogul,Lawrence.Brakmo,David.Lowell,Dinesh.Subhraveti,Justin.Moore� @hp.com

Abstract
Traditional application programming interfaces for

transportprotocolsmake a virtueof hidingmostinternal
per-connection state. We argue that this information-
hidingprecludesmany potentially usefulapplicationfea-
turesandperformanceoptimizations.Weadvocateadis-
ciplined, portable,andsecureinterfacethatgivesapplic-
ationsboth “get” and“set” accessto transport connection
state.

1 Introduction
Most modernoperating systems provide a protocol-

independentapplication programming interface (API) to
transportprotocolssuchasTCPorSCTP. ThisAPI, often
basedon the BSD socket abstraction, makes a virtueof
hiding most internal per-connection state. Applications
useabstract “connections” with high-level characterist-
ics (e.g., “reliable stream”) guaranteed by the protocol
implementation, and remain ignorant of internaldetails
such as sequencenumbers,round-trip time estimates,
andtransport-level options.

Theinformation-hiding inherent in asocket-like trans-
port API promotesapplicationportabili ty between trans-
port protocols,andbetweendifferentimplementationsof
thesame transport. If the application cannot see the in-
ternal statefor aconnection, it won't haveanydependen-
cieson this state. Other operating systems,suchas Plan
9 [18], go even further thanBSD in making a virtue of
hiding information.

Thisapproach hasreached its limits. It workedfinefor
simple applications,such as Telnet, FTP, andemail. But
traditional hidden-state transportAPIs preclude many
potentially useful application featuresandperformance
optimizations. In this paper, we describe a numberof
applicationtechniquesthatcannot beimplemented using
hidden-stateAPIs, but that could exploit exposed trans-
port state.

We advocate that a traditional API, such as sockets,
could be extendedwith a disciplined, portable, and se-
cureinterface to give applications both “get” and“set”
accessto transport connection state. The provision of
“set” accessis a radical suggestion,andweaddressboth
its justification anditssafety.

In this paper, we focuson TCP, rather than on trans-

ports in general. Other transports areeither uninterest-
ing (e.g., UDPhasessentially no “per-connection state”)
or aretoo novel (e.g., SCTPimplementations are avail-
able[20] but wearen't sufficiently knowledgeable about
the protocol or the implementations). Theprincipleswe
discusswith respectto TCPshould beapplicableto other
transports,and the API proposed in Section 5 is mostly
transport-generic.

2 A few scenarios
We start by presentinga few scenarios to motivatethe

restof the paper. Later, in Section 4, we will discuss a
largervariety of potential applications.

2.1 Process migration
Supposeonewants to migratea runningprocessfrom

onehostto another, without requiring explicit migration
support in the operating system, andtransparently to all
communicating peer processeson other hosts. Mi loji-
cic et al. argue that user-level implementations of mi-
grationhave somebenefitsover kernelimplementations,
but point out that movingconnectionendpointscan make
this difficult [14]. For example,whentransferring a live
TCP connection, the TCP sequence numbers must be
preserved.This is currently extremely difficult for auser-
level implementation of processmigration [1].

In our approach,theapplication (or auser-level library
acting on its behalf) on themigration source hostwould
usethe “get” feature of our proposedAPI extension to
extract all the necessary TCP connection state for the
process. (SeeSection 3 for adiscussionof whatstate this
entails.) This state would thenbeshippedto a newpro-
cessat themigration targethost, which would createnew
socketsandinitialize themwith the imported TCPcon-
nection state,via the“set” featureof our API. Of course,
many other challengesfacesuch amigration mechanism;
we believe (from implementation experience[16]) that
they areall surmountable,but we lack space to discuss
them here.

2.2 Adapting Web content to the network path
A widely-used Webserveron the Internet might serve

clients with dramatically varying network connectivity.
Somepeople use dialup networks; othersusecable mo-
dems. The availablebandwidths spanseveralordersof

CCR Paper Comment, Discussion, and Update Forum: http://www.acm.org/sigcomm/CCR/forum

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 200499



magnitude, posing a problem for a site designer who
wants to provide rich detail for well-connected users
while not subjecting dialup usersto enormousdelays.

If the Web server could make a crudeestimate of the
network pathassoonas theclient establishesits connec-
tion, the server could then deliver content whose com-
plexity isadaptedto thepath bandwidth – withoutrequir-
ingtheuserto click to choosebetween “high bandwidth”
and“low bandwidth” versionsof the site [15].

A crudeestimatethatsimply clustersclientsinto “fast”
and “slow” categories should allow a server to choose
betweena pair of pageversions[11]. Such an estimate
could derivefrom theinitial roundtrip time(RTT) meas-
urementfor theconnection, which is availableassoon as
theclient's request arrives. A single RTT measurement
might bean inaccurate predictor of thepath bandwidth,
but sincea TCP connection's initial throughput is usu-
ally RTT-limited,not bandwidth-limited [4]), it could be
sufficient.

Making TCPconnectionstateinformation, such asthe
RTT estimate, the congestion window, the retransmis-
sionrate,andotherindirect estimatorsof thepath quality,
available to anInternet server could allow it to adaptits
behavior automatically.

3 Categories of transport state
We find it useful to categorize transport state accord-

ing to several axes:

Hard state vs. soft state: The hard state of a transport
connection mustbepreserved(i.e., acrossa check-
point or migration) in order for the connection to
continue transparently to the remote peer. Hard
state includestheTCP port number, state-machine
state (e.g., ESTABLISHED or TIME WAIT), se-
quenceandacknowledgement(ACK) numbers,and
someTCPoptionssuch asWindow ScaleandMSS.
Soft statecould bediscardedwithout affecting cor-
rectness,and can be recoveredor rediscovered, al-
thoughits lossmight reduceperformance. Softstate
includes theestimatedRTT, currentsettings of con-
nection timers,andthe congestionwindow.

Fixed, varying, or connection-initialization state:
Certain connection state is inherently fixed from
the initial creation of a connection. For TCP, this
includes the port numbersandIP addresses. Other
state, suchas sequencenumbers, variesduring the
entire lif etime of the connection. A third category
of state,such as the TCP MSS, is allowed to vary
only during the initialization of a connection. We
separate thefixed andconnection-initialization cat-
egories because the former can never be changed,
but the latter might change (under the control of

the remote peer) during initialization, which might
affect how theapplication interacts with thisstate.

In addition to thesestate values, we alsoneed to give
the application control over whether they can change
asynchronously. That is, when the application is get-
ting or setting connection state, in manycasesit needs
atomic accessto the entire state, and it might need to
avoid asynchronousstate changesthatmight result from
packet arrivals or timer expirations. Thus,we definea
sort of meta-state for the connection that can beoneof
in-progress, quiescing, or frozen. The application must
be able to request that the protocol stack quiesce an
in-progress connection, to discover whenquiescence is
complete (i.e., that the connection is frozen),andto re-
sumefrom the frozenstate.

4 Applications of this approach
In this section, wesketchavarietyof applicationsthat

could benefit from moreaccessto transportconnection
state. We have divided the list of applications into sev-
eral major categories, but this categorization is neither
exhaustive nor definitive.

Our goal in presenting this set of applications is to
motivate the provision of a simple and generic facil-
ity for user-level access to transport connection state.
Many of theseapplicationscould insteadbe enabled us-
ing problem-specific operating systemextensions, but
we advocate the adoption of a genericmechanism be-
causeit should be usefuleven for applications that we
haven't thought of.

4.1 Connection persistence over failures and
migrations

Traditional APIs bind transport connections to spe-
cific processes. The processabstraction, while useful,
sometimes overdeterminesthe binding of connections
and other resources. It can be valuable to recover the
stateof a process(i.e., using a checkpoint) for fault tol-
erance [9, 12], or to move the state of a process(i.e.,
processmigration [14]) for eitherfault toleranceor load
balancing.

Bothcheckpointingand processmigrationrequirespe-
cific techniques to preserve extanttransport connections.
We focus on techniquesimplemented in user-level code.

4.1.1 Process migration via a user-level library

Processmigrationcanbeimplementedasauser-level lib-
rary with relatively little explicit kernel support, but mi-
grating active transport connectionscan bedifficult. We
introduced thisapplication in Section 2.1.

Notethat in additionto accesstohardconnection state,
suchasTCPsequencenumbers,a user-level librarythat

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004100



migratesconnections would alsoneed a way to freeze
the transmissionof TCP acknowledgments. An ACK
allows the remote peer to discard its buffered data; if
our hostsendsan ACK after we snapshot its connection
state, then we could lose data arriving after that snap-
shot. (It might not benecessaryto freeze theprocessing
of arriving ACKs, since losing this information causes
extraneousretransmits ratherthan dataloss.)

Wholesalemigration of processesfromonehost to an-
otheralsoimpliestheneedfor ameansto movethehost's
IPaddress.(If both endsof theconnection arecontrolled
by theprocessmigrationsystem, this might notbeneces-
sary.) There are severalpossible solutions to that prob-
lem, suchas broadcasting an Address Resolution Pro-
tocolmessageto changethe(IP, Ethernet) bindings.Al-
ternatively, one could perhaps support changing the IP
address,through the Migrate TCPoptionsproposed by
Snoeren andBalakrishnan [22].

All of theconsiderations above,except for IP address
migration,alsoapply to aprocesscheckpointing facility,
for usein preserving processes acrossfailures such as
system crashes.

4.1.2 Reading unavailable input data

If aprocesswith opentransport connectionsisbeingmi-
grated or checkpointed by user-level code, the check-
point must capture received data that the kernel has
already ACKedbut not yet deliveredto the application.
(Either the application hasnot yet madea system call
to read the data,or the call has not fully completed.)
For transport implementationsusingonly cumulativeac-
knowledgments, suchas the original TCPstandard,this
is relatively simple: thelibrarycode freezes ACK trans-
mission and then usesthe standardread() systemcall to
readall of the dataup to thecumulative ACK limit.

Modern TCP implementations, however, support se-
lective acknowledgment(SACK) [13], which allows the
receiver to acknowledge dataeven if there are holes in
the arriving TCP stream. The semantics of the read()
systemcall prevent it fromreadingpast such ahole, mak-
ing it impossible for a user-modelibrary to capture any
selectively-acknowledgeddata following thefirst hole.

This is not a correctnessproblem for SACK, which is
specifiedto preventthesenderfrom dropping databefore
thecorresponding cumulativeACK, althoughit mightbe
a problem for a future transportthat lacks this require-
ment.It might also bea performanceproblem when mi-
grating or checkpointing an application,suchasa server
with lotsof opendata-receiving connections.

Thus,a user-level migration/checkpoint facility might
benefit from an API allowing it to capture and restore

acknowledgedbut unavailable input data.

4.1.3 Making TCP sends redoable

Typical rollback-recoverysystemsrequirethat all applic-
ation eventsareeithernatively “undoable” or “ redoable,”
or canbe madesoby the recovery system[12]. Mostap-
plicationeventsdo satisfy thisrequirement.For example,
modifyingdatain memory or writingto anon-shared file
areboth intrinsically redoable events,and both can be
madeundoable throughappropriate undo-logging in the
recoverysystem.

However, becauseof a message's effect on other pro-
cesses, a TCP sendcannot(easily) be madeundoable.
Nor can TCPsendsbemaderedoable at userlevel. If a
processsendsaTCPmessage, fails, recoversto anearlier
execution point, thenattempts to resend the same mes-
sage, TCPwil l transmit the“ resent”messagewith anew
rangeof sequence numbers.The messagerecipient will
seethis asa newmessageratherthana retransmission.

The problem for user-level redo is that the send
sequence number is not exposed by the traditional
TCP API. Existing recovery systems work around this
problem by intercepting and inspecting outgoing TCP
frames [1], using a special TCP implementation at the
client andserver [21], rolling back thestate of themes-
sage receiver [23], or spoofingthe application into using
a user-level, TCP-like transport over UDP[12].

An API thatexposesthesequence number would per-
mit a user-level recovery system to checkpoint it along
with therestof theprocessstate. An API that alsoallows
“set” accessto the sequence number would permit the
recovery code to restore this to its last committedvalue.
Both “get” and “set” are necessaryto renderTCP sends
redoable,and to enable a user-level recovery systemto
correctly recover applicationswith TCPconnections.

4.1.4 Delaying ACKs until receiver commits data

Many failurerecoverysystemsarebased on messagelog-
ging[9], recording thenon-deterministic eventsexecuted
by a process, such as messagereceptions. The recov-
erysystemcanreplay theloggedeventsto therecovering
application, causing it to deterministically recomputeits
pre-failure state.

A user-level implementation of a pessimistic logging
protocol interceptseach received messageand writes it
to stable storage beforedelivering it to the application.
Since the TCP senderdeletes its buffered copy of the
messageuponreceiving an ACK, theloggermustprevent
this ACK until the messagehasbeensafely logged [1].
Otherwise, a failure after the ACK and before the log

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004101



write would leadto inconsistencyafterrecovery1.
If the TCP API allowed user-level code to decide

whetherto sendanACK for a particularbyte in theTCP
sequencespace, this would permit a user-level logging
system to delayACKs until messagesaresafely logged.
Notethatdelaying anACK beyondlimit of thesmallerof
thereceiver and senderwindows could lead to deadlock,
unlesstheACK-delayingmechanismincludesatimeout.

4.1.5 Hiding a recovering system

If a remotepeer might time out while a failed systemis
recovering, it might be useful to createthe illusionthat
the TCP connection is still alive. One way to do this,
similar to a techniqueusedby Alvisi et al. [1], is to em-
ploy a“helper system” thatfakesactivity ononeor more
connectionswhile thereal system is recovering.

A helpersystemthatknows thecurrentsequence and
acknowledgment numbersfor thecrashed endof a TCP
connection can send periodic keep-alive packets to the
remote peer, which appear to come from the crashed
host. It probably doesnot need fully up-to-datesequence
number values, since use of somewhatold values,while
appearing to bedelayedduplicates,should still convince
the remote peer of the livenessof the system. So, the
helpersystem canobtain sequenceand acknowledgment
numbers lazily and asynchronously from the protected
system, while it is not crashed. (Alv isi et al. also sug-
gest simulating a closedreceive window, to prevent the
wasteful transmissionof data that will bediscarded.)

4.2 Performance adaptation
Mostconnectionstateneeded to supportpersistenceis

hard state. Soft connection state, in contrast,ismostuse-
ful in improvingapplicationperformance, andespecially
in adapting this performanceto network conditions.

4.2.1 Adapting content to path bandwidth

Section 2.2 introduced the potential for adapting Web
content to thecapacity of thenetwork pathto the client,
andusing subsets of the “soft” TCPstate to quickly (if
crudely) estimate that capacity.

Thistechnique,if based on timing informationsuchas
theRTT, mayrequire theuseof finer-grainedtimersthan
typically employed in TCP stacks. Since most dialup
modems impose one-way delaysof 50 msec, independ-
entof distance[6], anRTT well below 100 msec clearly
indicatesa non-dialup (i.e., potentially high-bandwidth)
TCP connection. RTT measurement in 4.4BSD-based
systems uses a 500-msec clock tick, far too coarse for

1Optimistic logging [23] avoids this risk, at the expenseof a com-
pli catedprotocol for rolling backthesender after a failure.

discriminating between dialup and other paths. Brakmo
andPeterson describedan efficient wayto computeRTTs
at much better precision [3]. One might alsoestimate
bandwidth using a “packet-pair” approach[10], if the
API can provide fine-grained arrival timestampsfor the
mostrecentpackets(and their lengths).

4.2.2 Checking output buffer size

Someapplications (e.g., streaming media servers) can
adapt to changing network congestion by dynamically
increasing or decreasing the compression of transmitted
content. Thereis no value to data that is stuck in the
sending host's output buffer for lengthy periods;thecli-
entwil l discardit, as too stale, when it arrives.A server
that can detect congestion could reduce its output rate
consistent with network capacity, thusdelivering timely
(if somewhatdegraded)content to theclient.

A TCP-basedstreamingserver can easily detectcon-
gestion on a specific path by monitoring the amountof
bufferedoutput data. If thebuffer sizeis growing (over
a suitable measurement interval) thendata is being sent
faster than the network can carry it. Measuring buffer
consumption by blockingon a send() system call is inef-
ficient andinaccurate;an explicit API featurethatreturns
thenumberof buffered,unacknowledgedbyteswould be
quiteuseful.

A pending-output-bytes measurement mechanism
might also be useful for an application (such asa Web
server) wishing to avoid overcommitting kernel buffer
space,or to preserve it for high-QoScustomers.

4.3 Implementation techniques
The final category of applicationsinvolves novel im-

plementation techniques.

4.3.1 Moving connections between TCP stacks

Traditionally, each host hasjust oneimplementation of
the TCPstack. However, in certain circumstancesa host
might need to move a live connection between one of
severalimplementations.

For example,if the TCPimplementation is being up-
datedto fix bugsor add features,on a high-availabili ty
systemit might be desirable to run thenew implementa-
tion temporarily in parallel with theold one (with some
coordination!), shift live connectionsto the new imple-
mentation, andthen disable the old one.

Or if thenetwork interfaceprovides“TCP offload”, it
might bedesirable to shift live connectionsbetween the
offloadedandsoftwareimplementations(e.g.,if resource
limits of the offloaded implementation allow it to host
only a small subset of theconnections.)

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004102



Moving connections for these reasons is similar to
moving them for processmigration or checkpointing,
andhas similar requirements. Stack-shifting, however,
placesa premium on the portabili ty of connection state;
that is, it requires anexternal form that does not reflect
thedetails of a specific implementation.

It is not clear if stack-shifting is bestdone inside or
outside the kernel, but a user-level solution is attractive
because(if done via a uniform API) it works seamlessly
acrossany pair of stack implementations.

We are not aware of any implementations that shift
live connections between stacks on the same host.
However, Migratory TCP does implement connection-
shift ing between stackson different hosts [24], which
should be of similar difficulty.

4.3.2 Absolute sequence numbers in MPA

“Marker PDU Aligned Framing for TCP” (MPA) is a
proposedframinglayer, betweenTCPandanupperlayer
thatsupportsdirect (non-buffered) placementof received
data into memory [7]. MPA uses markers to allow
hardware-baseddirect placement even when TCP seg-
mentsare received out of order. The details of MPA are
beyond thescopeof this paper, but the marker mechan-
ismis of interest.

MPA markersareinsertedevery 512 bytesin theTCP
sequencenumber space. This deterministic spacing al-
lows the TCP receiver to locate the markers in any
packet. The specification calls for inserting markers at
512-byte boundariesrelative to the startof the connec-
tion. Eiriksson [8] pointedout that this requires a hard-
ware implementation of MPA to obtain someprotocol
control block information for eacharriving packetbefore
it can locate the markers; suchlookups arecostly. He
proposedinsteadthatmarkersshould appear at512-byte
intervals in the absolute sequence numberspace (i.e.,
when thesequencenumbermod512 is zero).

While this proposedmodification hadboth costs and
benefits, themainargumentagainstit wasthatstandards-
body considerationsrequire thatMPA be implementable
in user-level code, over an existing TCP stack,andex-
isting stacks do not exposeTCP sequencenumbers. If
widespread APIs had exposed TCP sequence numbers,
thenMPA could have usedabsolute sequence numbers.

Thisscenario doesnot imply that adoptingourpropos-
alsfor theTCPAPI would changethedesigndecisionfor
MPA; it is far too late for that. We include this example
only to show how in analternateuniverse,whereall TCP
APIsalready provideaccessto thesequencenumber, this
design for MPA would be feasible and perhapswould
have beenadopted.

5 A disciplined API
In this section, we proposean exposed-stateAPI for

TCP. A similar API should be feasible for other trans-
ports. For reasons of space, weomit manydetails (some
of which arein any casenotyet clearto us).

We call this a “disciplined” API because,while it ex-
posesstatepreviously considered best left hidden,we
have tried to exposeonly state, not implementation de-
tails. Ideally, our API should permitportabili ty of user-
level code,andperhapsevenmigration of activeconnec-
tions,betweendifferent operating systems.

TheAPI should alsoallow evolution of transportpro-
tocols and kernelimplementations. That is, an applica-
tion usingthis API thatworks beforetheintroduction of
a new protocol featureshould continue to work after its
introduction, andshould not defeat the useof that fea-
ture.

We note that although our API proposaldoes require
changes to the kernel's transport protocol implementa-
tion, thesechangesarerelatively simple. Moreover, by
enabling user-level implementationsof many newfunc-
tions,thisonenew API supplantsmany otherpotentially
useful, but possibly complex,kernelmodifications.

5.1 Connection identification
ThetraditionalBSD operations(suchasgetsockopt())

identify connections using a file descriptor. This limits
those operations to the processthat is using the con-
nection (or its children). We propose,for our state-
accessoperations, identifyingconnectionsinsteadby the
protocol-ID (suchasTCP, SCTP, etc.) and the corres-
ponding addresstuple– (src-addr, src-port, dst-addr, dst-
port) for TCP. Thisgivesany processwith thesameuser-
ID astheconnection owner, or aroot-privilegedprocess,
“get” and“set” accessto connection state. This in turn
enablestheuseof “helperprocesses” to assistwith func-
tionssuchas checkpointing or migration. It alsoallows
cleaningup thefrozenconnectionsof a deadprocess.

For compactness,we usethe term conn-ID below to
refer to the (protocol, src-addr, src-port, dst-addr, dst-
port) tuple.

Thereis one exception to the conn-ID approach: it
cannot be usedto bind an existing addresstuple (e.g.,
for a migrating connection) to a new socket,sincethat
new socket has no tuple. The API will needa special
call, usinga file descriptor, for this.

5.2 Access to state values
We want to avoid tying our API to a specificstack im-

plementation, or to a specific point in the li fetime of a
stack. Sincedifferentstacks wil l naturally provide dif-
ferent support for certain soft state, and certainoptional
componentsof hardstate,theAPI should not usean in-

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004103



ternal representation of transport state. Instead, we ad-
vocatea (keyword, datatype, value, flags) representation,
where “keywords” arean enumeration type, and“data-
type” is analogousto thesimple typesof theC language,
including arrays.The“flags” mark a returnedstate item
ashard vs. soft, initializedvs. uninitialized,etc.

The API would include one state-readingoperation
transport state get(conn-ID, tuple-count, tuple-vector).
The tuple-vector (with tuple-count entries) both indic-
ateswhat state items arewanted, andreturns their val-
ues (if available). Becauseone call returns multiple
items,this should reduce theoverhead of usingtheAPI.
The transport state get operation should also provide a
means (suchas wild-carding) for the application to get
all hard connectionstate,even for keywords unknown to
theapplication; this supportsprotocol evolution.

Similarly, the operation transport state set(conn-ID,
tuple-count, tuple-vector) updatesthe connection state
from thevalues in thetuple-vector.

5.3 Connection progress
The transport freeze(conn-ID) operation setsan in-

ternal per-connection flag preventing the transport stack
from taking anyaction on the connection. Timeouts are
deferred(not lost); arriving packets might beeitherbuf-
feredor dropped.The transport resume(conn-ID) oper-
ation clears this flag, releasesany deferred timers, and
starts theprocessing of bufferedpackets.

5.4 Buffer manipulations
The transport read pending(conn-ID, buffer, bufsize,

bufvec-array, count) operation returns, into the buffer,
all received data that has been ACKed, even if there
areholes in the sequence space. Bufvec-arrayis an ar-
ray of (offset, pointer, length) tuples representing the
extents of received data. The corresponding trans-
port restore pending(conn-ID, buffer, bufsize, bufvec-
array, count) operation puts databack into the“unread”
portion of the connection's input buffer. The trans-
port buffer purge(conn-ID) operation deletesall buf-
feredinput andoutput data for the connection.

5.5 Timing information
Section 4.2.1 speculated that packet-pair timing in-

formation could help with server adaptation. A trans-
port stack could efficiently support this by keeping a
smallper-connection ring buffer of recent packet arrival
timestampsandlengths. Our API could allow theserver
application to read thisbuffer.

5.6 Security
In general, we have not yet found any obvioussecur-

ity holescreated if a process(or its designatedhelpers)
canmodify the internalstateof its own connections,via

the API wehavedescribed. Theoneexception is the po-
tential for performance-relatedmischief, such as denial-
of-service attacks. Savage et al. have described how a
misbehaving TCP receiver can violate congestion con-
trol norms[19] andourAPI would make thateasy.

We have consideredseveral solutionsto this problem
(beyondtheprotectionsin [19]). It might bepossible for
the kernelto cryptographically signa subsetof the state
it exports, and then to refuseto import an improperly
signed statevector. However, thisapproach mightbetoo
rigid, and reliesonsecurekeymanagement(acrossmul-
tiple hosts, for a migration system).

Alternatively, theAPI could restrict thesetting of cer-
tain stateitems to super-user processes. User-level im-
plementations that move or update state would require
the helpof such a “chaperone”process,via theconn-ID
approachof Section 5.1, ratherthanallowing a regular
processto directly updateitsconnectionstate.

We suspect thesecurity analysis of our approach will
require morework, especially with respect to transport
protocols otherthanTCP.

6 Related ideas
Several previousprojectshaveaddressed theappropri-

atelevel of application-level exposureof operating sys-
tem internalstate, and the associatedpolicy/mechanism
separation issues.

TheV++ Cache Kernel [5] maintained kernelcaches
of variouskernel state (for example, page table entries)
but usedhandlers outside the kernel to implement al-
mostall decisions andstatemanipulation. This design
seemswell-suited to checkpointing andprocessmigra-
tion. Since V++ was a micro-kernel, it had no kernel
network stack andso the Cache Kernelmechanism did
notapply to transportconnections.

In the InfoKernel approach [2], a traditional (mono-
li thic) kernel is modified to export abstract information
aboutinternalstate,in order to allow user-level codeto
influencekernel policies. For TCPconnections, InfoKer-
nelprovidesboth sequence-numbervaluesandsomeper-
packet timing information (similar but not identical to
our proposal in Section 5.5). However, the InfoKernel
philosophydoesnot includeanexplicit state-settingAPI;
while InfoKerneldoesallow user-level codeto emulate
TCP Vegas [3] behavior on top of a TCP Reno kernel,
it cannotsupport user-level process migration or check-
pointing.

As noted in Section 5.6, an application that can up-
datetransportconnection statecould generate network-
unfriendly packet flows [19]. Patel et al. have shown,
in their work on remotely upgrading transport protocol
implementations [17], that a kernelcan enforce “TCP-

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004104



friendly” flow rate restrictions on untrusted protocol
code. Useof this kind of approach in conjunction with
our API might suffice to protect thenetwork against ex-
cessive traffic.

7 Summary
We have argued that many interesting applications

could usean API that exposesper-connection transport
state. We have attemptedto explain the kinds of state,
andkinds of manipulations,that would be necessary or
useful. Wesketchedasimple andportableAPI extension
thatshould meettheserequirements.

Many of the scenarios we have described for ex-
ploiting our approach could be resolved by application
changesrather than by exposing connection state. We
assert thatwhile changing theapplications might bethe
“ri ght” solution, if one wants to provide application-
generic services such asrecovery or migration, the ap-
plicationsmust beacceptedastheyare.

References
[1] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo,

andD. Zagorodnov. Wrapping server-sideTCPto mask
connection failures. In Proc. INFOCOM, pages329–337,
Anchorage, AK, April 2001.

[2] A. C. Arpaci-Dusseau,R.H. Arpaci-Dusseau, N. C. Bur-
nett, T. E. Denehy, T. J. Engle, H. S. Gunawi, J. A.
Nugent, and F. I. Popovici. Transforming policies into
mechanismswith infokernel. In Proc. SOSP, pages 90–
105, Bolton Landing,NY, Oct.2003.

[3] L. S.BrakmoandL. L. Peterson. TCPVegas:Endto end
congestion avoidanceon aglobal Internet. IEEE Journal
on Selected Areas in Communications, 13(8):1465–1480,
1995.

[4] N. Cardwell, S.Savage,andT. Anderson. Modeling TCP
latency. In Proc. INFOCOM, pages1742–1751, Tel Aviv,
Israel, March2000.

[5] D. R. Cheriton and K. J.Duda.A caching modelof oper-
ating system kernel functionality. In Proc. OSDI, pages
179–193, Monterey, CA, Nov. 1994.

[6] S.Cheshire. Latency survey results(for “It 's theLatency,
Stupid”). http://www.stuartcheshire.org/
rants/LatencyResults.html, 1996.

[7] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Car-
rier. Marker PDU aligned framing for TCP specific-
ation. Internet-Draft draft-culley-iwarp-mpa-03, IETF,
June2003. This awork in progress.

[8] A. Eiriksson. Relative location of MPA markers con-
sideredbadfor pipelining. Personal comm.,June2003.

[9] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recoveryprotocolsin message-
passing systems. ACM Computing Surveys, 34(3):375–
408, September2002.

[10] S. Keshav. The packet pair flow control protocol. ICSI
Tech.Rep. TR-91-028, Intl. ComputerScience Institute,

Berkeley, May 1991.
[11] B. Krishnamurthy and C. E. Will s. Improving Webper-

formanceby clientcharacterization drivenserver adapta-
tion. In Proc. WWW-11, Honolulu, HI, May 2002.

[12] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring
failuretransparency andthelimitsof generic recovery. In
Proc. OSDI, pages289–303, SanDiego, CA, Oct. 2000.

[13] M. Mathis,J.Mahdavi, S.Floyd, andA. Romanow. TCP
selectiveacknowledgment options.RFC2018, IETF, Oc-
tober 1996.

[14] D. Miloji cic, F. Douglis,Y. Paindaveine,R. Wheeler, and
S. Zhou. Processmigration. ACM Computing Surveys,
32(3):241–299, 2000.

[15] J. Mogul andL. Brakmo. Method for dynamically ad-
justingmultimediacontentof a Webpageby a server in
accordance to network path characteristics between cli-
ent and server. USPatent 6,243,761, June2001.

[16] S.Osman, D. Subhraveti, G. Su, and J. Nieh. Thedesign
and implementationof Zap: A system for migratingcom-
putingenvironments.In Proc. OSDI, pages361–376, Bo-
ston, MA, December 2002.

[17] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading transport protocols using mobile
code. In Proc. SOSP, pages1–14, Bolton Landing, NY,
Oct.2003.

[18] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[19] S. Savage, N. Cardwell, D. Wetherall, and T. Ander-
son. TCP congestion control with a misbehaving re-
ceiver. Computer Communication Review, 29(5), 1999.

[20] SCTP.org. Stream Control Transmission Protocol.
http://www.sctp.org/.

[21] A. C. Snoeren,D. G. Anderson, and H. Balakrishnan.
Fine-grained failover using connection migration. In
Proc. 3rd USENIX Symp, on Internet Technologies and
Systems, pages 221–232, San Francisco, CA, 2001.

[22] A. C. Snoerenand H. Balakrishnan. An end-to-end ap-
proach to hostmobility. In Proc. MobiCom, pages155–
166, Boston,MA, Aug. 2000.

[23] R. E. Strom and S.Yemini. Optimistic Recovery in Dis-
tributed Systems. ACM Trans. on Computer Systems,
3(3):204–226, Aug. 1985.

[24] F. Sultan, K. Srinivasan,D. Iyer, andL. Iftode.Migratory
TCP: Connection migration for service continuity in the
Internet. In Proc. 22nd Intl. Conf. on Distributed Com-
puting Systems, pages 469–470, Vienna, July 2002.

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004105



ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004106


